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ABSTRACT 

Crucial to the safe and effective operation of U.S. Navy vessels is the quick and 

accurate identification of aircraft in the vicinity. Modern technology and computer-aided 

decision-making tools provide an alternative to dated methods of combat identification. 

By utilizing the Soar Cognitive Architecture’s reinforcement learning capabilities in 

conjunction with combat identification techniques, this thesis explores the potential 

for collaboration of the two. After developing a basic interface between Soar and combat 

identification methods, this thesis analyzes the overall correctness of the developed 

Soar agent to established truths in an effort to ascertain the level of system learning. 

While the scope of this initial research is limited, the results are favorable to a 

dramatic modernization of combat identification. In addition to establishing proof 

of concept, these findings can aid future research to develop a robust system that can 

mimic and/or aid the decision-making abilities of a human operator. While this research 

does focus on a sea-based, naval, application, the findings can also be expanded to DOD-

wide implementations. 
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I. INTRODUCTION 

A. OBJECTIVE AND PURPOSE 

The massive amount of information available to the tactical decision maker can 

overwhelm a single operator such as a Tactical Action Officer (TAO) or Mission 

Commander (MC). In an operational environment, the TAO or MC must identify and 

classify unknown aircraft quickly and correctly (Chief of Naval Operations [CNO], 

2012). As the number of unknown aircraft increases, the corresponding amount of sensor 

data and decision-making information increases. By attempting to identify a program that 

will aid the TAO/MC’s decision-making process, it may be possible to increase the 

effectiveness of the operator and, therefore, increase the safety inherent in the operational 

environment by reducing the amount of time that aircraft remain unclassified with respect 

to combat identification (CID). Through reinforcement learning (RL) solutions, the Soar: 

Cognitive Architecture could facilitate CID and, ultimately, mimic the cognitive process 

of a TAO/MC. 

This thesis is a critical step in solving the problem of CID operator tasking 

overload that can be experienced by the TAO/MC decision maker, by identifying 

computer-aided decision-making tools that mimic the CID process through valid 

(accurate) RL. By evaluating the effects of RL on a simplified CID ruleset it is possible 

to evaluate the Soar Cognitive Architecture as a plausible framework to incorporate into 

TAO/MC duties. Ultimately, evaluating whether RL functions are a sufficient toolset to 

accurately mimic the cognitive functions of a TAO/MC in CID within a specific area of 

operations is crucial to proving the concept viable prior to extended research. 

Researching the potential benefits of RL could reframe the standard operating procedures 

of CID and the primary duties of the TAO/MC. 

B. RESEARCH QUESTION 

Evaluating a RL algorithm in conjunction with CID is a crucial step in research to 

ascertain feasibility of a cooperative system. Utilizing the SOAR Cognitive Architecture 
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and a rudimentary CID matrix, this thesis will attempt to answer the following research 

question: “Does valid reinforcement learning of CID take place with SOAR cognitive 

architecture?” 

Evaluation of the above research question will be achieved through the 

development and analysis of two results-oriented hypotheses.  

 Hypothesis Ia. Incorporation of reinforcement learning/reward values 
into combat identification functions will decrease or not change the 
validity of the recommended action/identification provided. 

 Hypothesis Ib. Incorporation of reinforcement learning/reward values 
will increase the validity of the recommended action/identification 
provided. 

These hypotheses will be further discussed in Chapter IV   

C. RESEARCH METHODOLOGY  

Since no prior information for development of a CID decision-making matrix is 

available, the methods required to answer the proposed research question first require 

steps to develop the virtual environment and application. While limited past research has 

been done in this specific field, the principles of statistical analysis are still applicable to 

the data accumulated.  

First, after a thorough examination of the information and knowledge of both 

fields (CID and RL), we will develop a rudimentary CID cognitive model of a TAO/MC. 

Taking into account inputs and methodology of CID itself, this will be done in such a 

manner that it can be easily translated into Soar application. The Soar CID agent 

developed will be tested against virtual track data in a limited simulation environment.  

The data will then be collected in the simulation, first to establish a baseline for 

non-RL Soar CID, then to explore parameters of the Soar RL system. This exploitation of 

the parameters of RL in Soar will explore maximization of correctness in this application.  

The overall correctness of the run compared to ground truth evaluation will be 

documented. The data will then be verified for statistical significance. Finally, based on 
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the improvement or degradation in overall correctness in comparison to baseline 

sampling, we will be able to make assumptions of validity to the proposed employment.  

D. POTENTIAL BENEFITS AND LIMITATIONS 

The integration of CID and RL has the potential to overhaul the effectiveness CID 

as a process. By integrating a system that can adapt to local conditions for classification, 

the TAO/MC will have an additional tool to verify aircraft classifications, a safety net. As 

the efficiency of CID operationally increases this would have the two-fold benefits of 

freeing up the warfighter/operator for other tasking, and increasing the veracity of CID 

assumptions, thereby decreasing inaccurate identifications and decreasing completion 

time of the fix segment the “Kill Chain.”  

Soar is a versitile RL program that can be adapted to suit many different 

disciplines. Integrating Soar and CID is a logical first step in the development of a CID 

system based on RL. Soar and the script written to mimic the cognitive functions of a 

TAO/MC are simplistic enough to test different variations of parameters and learning 

methods, policies that would be more difficult if done without. Automation of the RL 

implementation, even at this level, is streamlined.  

The method in which the data and virtual track information have been inputted is 

labor intensive. While future research should integrate Soar and sensor outputs directly, 

removing the human operator from a portion of the process, the manual method of data 

entry to teach the RL limits the amount of data that can be entered and processed. In 

addition, there is currently no storage, or memory, for specific configurations or instances 

of tracks that it can build upon; each input is a new track.  

Although the scope of this study is limited, partially due to its classification, the 

research is geared to set the stage for proving the feasibility of using artificial intelligence 

and learning programs in conjunction with CID. It is necessary to take the initial steps to 

prove the concept prior to advancing to more complicated scenarios. Through the testing 

of a basic model, establishing validity and lessons learned can and will help future 

research. 
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E. ORGANIZATION OF THESIS 

In Chapter II, we will lay out current policies and background for both CID and 

RL, reviewing crucial terminology and ideas for both areas of study. Although previous 

research has been limited when combining the two, I will discuss possible 

implementation of RL and a cognitive architecture with respect to CID, and the possible 

methods of appropriate merging. Chapter II concludes with an explanation of the stated 

hypotheses. Chapter III develops the CID ruleset in an effort to mimic simplistic 

cognitive decision making of a TAO/MC and establishes parameters for the 

experimentation. Also, there is an introduction to the developed Soar CID application 

used to test the hypotheses. This chapter will also propose phases of learning appropriate 

to maximize RL return and accurate CID. Chapter IV is devoted to the statistical analysis 

of the results of the experimentation and analysis of the proposed hypotheses. Finally, 

Chapter V will summarize key points learned in the research and suggest further research 

possibilities that will allow the expansion of the ideas and concepts solidified throughout 

this thesis.  
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II. BACKGROUND 

While the possible applications of reinforcement learning (RL) have extensively 

been studied in other domains, this has not included application to a combat identification 

(CID) process. This chapter will depict a baseline of knowledge within both RL and CID 

appropriate to the integration and experimentation. This chapter will also serve to cement 

the need for developing a new tool to aid the human decision maker in CID 

implementation.  

A. COMBAT IDENTIFICATION 

While the basic definition of CID holds true through multiple sources, The Under 

Secretary of Defense defines CID as “[c]apability to differentiate potential targets as 

friend, foe, or neutral in sufficient time, with high confidence, and at the requisite range 

to support weapons release and engagement decisions” (Department of Defense [DOD] 

and Joint Chiefs of Staff [JCS], 1996, p.II-4). It is a process critical to the safe and 

effective operation of warfighters through the Department of Defense (DOD). While all 

branches of the DOD participate in some form of CID, this research will focus on 

application to the United States Navy (USN) and its sea-based operators.  

The objective of CID is primarily, “to correlate and assign a foe, friend or neutral 

identification label to a ‘target’” (DOD and JCS, 1996, p. IV-C-1). The duties of CID in 

an operational USN environment primarily fall upon a few members of the carrier strike 

group (CSG) or independently deployed naval vessel. While the Air Defense Officer 

(ADO) is one of the ultimate decision makers in a CSG environment, on most vessels it is 

the Tactical Action Officer (TAO) who is tasked with the protection of the ship. A 

Mission Commander (MC) is a qualification assigned to the primary Naval Flight Officer 

(NFO) aboard an E-2 Hawkeye. In a CSG environment, a MC will aid the TAO and ADO 

in developing the Common Operational Picture (COP) by performing CID. All 

participants in creating a coherent COP operate off of common guidance and doctrine.  
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1. Why Is it Important?  

It is imperative in modern battlespaces to know who is an enemy, who is a non-

participant, and who is a friend (Joint Staff, 2014). This ability to classify surface vessels 

and aircraft in an environment is crucial to safe and effective combat and peacetime 

operations. CID done effectively can reduce the amount of possible friendly fire incidents 

(Joint Staff, 2014).  

Most CID is just a part of a process to find, fix, track, target, engage, and assess 

(F2T2EA), commonly known as the “kill chain” (United States Air Force (USAF), 2014). 

The motivation to increase the accuracy and decrease the length of time for the “fix” 

segment of the “Kill Chain” is one of the most beneficial aspects of this CID application 

to aircraft identification.  

2. Terminology 

CID terminology and definitions hold weight and consequences. It is imperative 

to fleet operators that the lexicon of a TAO/MC is used with both the correct meaning 

and in the correct context. Defining the terminology of the process is a crucial step to 

understanding the cognitive structure of the warfighters tasked with the duty.  

Contact: an instance of an aircraft which is represented on a local data system.  

Track: an instance of an aircraft which is represented on a local data system, 

usually in conjunction with a datalink track number.  

Target: an instance of an aircraft of interest.  

Friend: “A positively identified friendly aircraft, ship or ground position” (HQ 

TRADOC, 2002).  

Hostile: “A contact identified as an enemy upon which clearance to fire is 

authorized in accordance with theater rules of engagement” (HQ TRADOC, 2002).  

Neutral: a contact identified neither as friend nor as foe.  
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3. Tools and Inputs 

The sensor input to the decision maker can be divided into four categories: 

procedural, cooperative, non-cooperative methods, and intelligence ID fusion methods 

(Chief of Naval Operations [CNO], 2014). Procedural methods are based on the analysis 

of a target’s motion or behaviors. While cooperative methods require the participation of 

the contact, non-cooperative methods will gather or extract information without any 

outside aid (CNO, 2014). Finally, methods based on the information obtained from 

intelligence networks. The ultimate identification could be based on information from all 

or some of the methods; the interpretation of the information provided is the primary task 

of the TAO with respect to CID. 

Cooperative methods of CID are primarily useful in the identification of friendly 

and neutral aircraft. One of the most versatile and global is Identification, Friend or Foe 

(IFF). IFF is crucial to the safe and effective operation and identification of civilian and 

military aircraft across the world (DOD and JCS, 1996). The range of IFF systems and 

Modes are displayed in Table 1. While not all modes are used by all aircraft, there are 

combinations used by known entities that aid in identification. For instance, civilian 

aircraft are generally required to operate their transponder with Mode 3/A and Mode C 

active (“Transponder Requirements,” 2006). Mode 1, 2, and 4 are primarily reserved for 

military aircraft (Department of the Navy [DON], 2013).  
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Table 1.   IFF Systems Summary. Source: CNO (2014) 

UNCLASSIFIED 

 
UNCLASSIFIED 

 

Non-cooperative methods of data ingestion for CID include radar returns. For 

example, this data can be analyzed to localize the aircraft or for platform classification 

via jet engine modulation aspects (DOD and JCS, 1996).  

There are multiple aspects of procedural control and this method of CID, such as 

point of origin or an aircraft operating on a predefined route in a predefined manner. An 

application of this behavior can be either minimum risk route (MRR) or return to force 

(RTF) profile (CNO, 2014)  

While localizing a track or classifying its profile is not by itself a definitive 

identification of the hostility or friendliness of that contact, the profile can be used to help 

process the likelihood of either, or another classification (CNO, 2014). In addition, the 

particular responses to IFF transmissions need to be interpreted based on area rules of 

engagement (ROE) and guidance from regional commanders.  

There is a wide range of inputs to the CID process, and all are a part of the overall 

picture to classifying the aircraft or contact. As information becomes available at any 

point in the Kill Chain that classification may or may not change based on the additional 
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data (DOD and JCS, 1996). It is imperative that the operator or system tasked with CID is 

making decisions based on accurate and timely information.  

4. Human Factors 

While there are computer and weapons systems developed to aid the process of 

CID, the final decision making typically resides on the shoulders of the warfighter, 

TAO/MC, and the human elements of the process. Ultimately, the decision to interact 

with a target resides with the human decision maker. There have been instances of 

incorrect identification with devastating consequences. For example, the USS Vincennes 

incorrectly classified a commercial airliner as an Iranian F-14 on 3 July 1988 (Dottery, 

1992). The decision was aided by the aegis weapons system recommendations and the 

time sensitivity of the matter, but the classification lead to the death of 290 civilians 

(Dottery, 1992).  

The preponderance of current literature on human factors in CID centers around 

CID with respect to ground forces and combat in a land environment. Although the 

primary emphasis of this thesis revolves around naval implementation, there are lessons 

that are universal. There are human factors that influence CID decision making overall; 

stress, experience, personality, and expectations are the primary forerunners (Bryant, 

2009). While this research does not focus on alleviating these factors, future research 

should focus on user interface and trust of the system to ensure that the computer 

decision aid is effective. If building a decision support aid, then human perception and 

differences in individuals need to be taken into account (Bryant, 2009).  

B. COMPUTER AIDED DECISION-MAKING 

1. Reinforcement Learning 

There are multiple methods of learning available to human and artificial systems 

in modern technology and human sciences. There are a few key factors that are of 

primary importance in reinforcement learning.  

The basics of the interaction in RL take place between two components, the 

agent, and the environment. The agent is the component that learns and makes decisions 
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and the environment is everything else, including the inputs to the agent for decision-

making (Sutton & Barto, 1998). The agent’s primary concern is to maximize rewards 

over time (Sutton & Barto, 1998).   

In an application to CID, the agent would be the rules to classify hostile and non-

hostile entities and reward values assigned to specified states. The choices that the agent 

makes depend on the preferences assigned to the track criteria at a given time. The 

environment consists of the observable space of a state and the human operator capable 

of rewarding the agent's action. As the operator rewards the agent's action (classification) 

the action is rewarded and the preference values are updated. The state consists of values 

assigned by sensors from the environment to a track at a specific time. In the loop 

depicted in Figure 1, once the possible reward values and state of a track are digested by 

the agent, an action is produced. In our implementation of RL CID, this action is a 

suggestion of identification classification awaiting user feedback.  

Figure 1.  Agent-Environment Interaction. Source: Sutton and Barto (1998). 

 

2. SOAR Cognitive Architecture 

Building a structure that can translate operational knowledge to an encoded 

physical structure is the goal of Soar. As knowledge gets encoded into a system, the 

flexibility and adaptability of the system improves and exceeds the capabilities of 

systems lacking cognition (Laird, 2012). Figure 2 is a display of the intersection between 

Soar and the hierarchy of a physical/human decision maker.  
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Figure 2.  Levels of Analysis of an Agent. Adapted from:  Laird (2012) 

  
 

Sitting above the physical level of signals and electrons, a cognitive architecture 

attempts to draw out the process knowledge and decision-making abilities of the human 

decision maker. “[A] cognitive architecture provides the fixed processes and memories 

and their associated algorithms and data structures to acquire, represent, and process 

knowledge about the environment and tasks for moment-to-moment reasoning problem 

solving and goal-oriented behavior” (Laird, 2012, p. 8). While this statement covers a 

multitude of possible applications, from chess to stacking blocks applications, the bottom 

line remains: the cognitive architecture presents an opportunity that could accurately be 

translated into a CID process.  

How the inputted data is treated is crucial to an effective RL system. Soar allows 

for the user to easily alter parameters of RL to suit their particular environment. While 

there are numerous parameters that can be changed to suit a RL application, the key 

components that will be explored in this thesis are learning-policy, exploration strategy 

and learning rate (Laird & Congdon, 2015).  

There are two learning-policies available in Soar/RL: Q-Learning and SARSA. 

The two algorithms control how the data will be treated and how the expected future 

reward is chosen (Laird, 2012). Both are based on the concept of Temporal Difference 

(TD) learning, where specific methods estimate value functions prior to user input to 

modify the final reward (Eden, Knittel, & Uffelen, 2017). Q-learning is an Off-Policy TD 

method where the future reward is maximized and SARSA is a TD method where the 

future reward is the value of the selected operator (Laird, 2012). 
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Once the learning policy has been established, the important parameter decides 

how the actions will be chosen. As an agent can only improve when integrated with an 

environment, the environment needs to be explored. There are multiple exploration 

strategies in Soar. An exploration policy allows for decision making based on numeric 

preferences (Laird, 2012). There are two main methods: ε-greedy and softmax.  

Greedy strategies look to exploit immediate maximized rewards (Sutton & Barto, 

1998). The integration of ε adds a randomness to the selection. As ε decreases there is 

less randomness in selection; as it increases there is more. Ε-greedy strategies seek to 

maximize reward return, but may sometimes select an action at random. The utility of 

randomness has been proven in certain scenarios. The performance improvement overall 

with a higher degree of randomness, ε=0.1 in comparison to the other two depicted 

selections, is shown in Figure 3. The ε-greedy methods perform more optimally due to 

their continued exploration (Sutton & Barto, 1998). Without injecting randomness, the 

greedy strategy remained locked or stuck, selecting suboptimal actions.  

Figure 3.  E-greedy Performance Comparison. 
Source: Sutton and Barto (1998) 

 
A comparison of ε-greedy action-value methods. Data gathered from the application of a 
10 armed bandit problem.  

The second exploration strategy is softmax. Softmax behaves like greedy 

strategies in selecting the maximum reward but ranks and weighs the remaining actions 

depending on associated value estimates (Sutton & Barto, 1998). A variation of softmax 
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is the Boltzmann distribution, which uses an additional variable called “temperature” to 

further affect the possibility of randomness. Temperature is a whole integer value, which 

is used to affect the ranking of the value estimates. As the temperature increases, all 

actions will become more equally probable. As the temperature decreases, actions will 

have greater difference in the probability of their selection, primarily based on the value 

estimates. A temperature setting of 0 will act much like a greedy strategy (Sutton & 

Barto, 1998). Soar sets a default temperature value of 25.  

ε can be a parameter in each of the stated exploration strategies, its intention is to 

inject an amount of randomness into the agent. This could be beneficial to mimic the 

different environment and human applications.  

Deciding which exploration strategy would be most useful is important because it 

will determine if an environment is still being explored or if it is being exploited. In terms 

of the two main strategies discussed earlier there may be benefits of one over the other 

based on variable settings. Ε-greedy is primarily an exploitation strategy, but as ε 

increases, there is more exploration due to the randomness. Softmax/Boltzmann is a 

combination determined by the temperature setting. The higher the temperature, the more 

exploration and the lower the temperature the system is biasing toward the best action, or 

maximum reward value, exploitation (Lewicki, 2007). Exploration versus exploitation 

has long been considered a dilemma (Lewicki, 2007): What is the appropriate amount of 

each? This will depend on the tasking of the RL application. In the context of CID, this 

has not been researched.  

The selection of the learning rate is also important to developing a stable RL 

system. The default value for learning rate in Soar is 0.3, with a range of 0–1. If the 

learning rate is set approaching one, the system will learn quickly. If the learning rate is 

set approaching zero, the system will learn more slowly; when set at 0, the system will 

not update reward values (Eden et al., 2017). To stabilize a RL application it is feasible to 

lower the learning rate once the percentage of correct decisions has maximized. This 

could limit the impact of anomalous operator feedback issues but also negatively impact 

the system if the environment changes drastically. The constancy of the environment and 



 14

the trust in the operators should have bearing on decisions to affect the learning rate in an 

operational implementation.  

3. Cognitive Functions in CID 

The translation of the cognitive functions of a TAO/MC in a CID context is not 

something that has been studied intensively. Although there are a few analyses of human 

decision making with respect to the discipline, there is not a definitive guide available at 

this level. Interpretations of previous research must be extrapolated to compare. One of 

the benefits of Soar Cognitive Architecture is that it assumes the bulk of the cognitive 

processes required to translate human to a machine. The Cognitive Process of Decision 

Making corroborates the cyclic tendencies of the decision making process and feedback 

loops to achieve a more accurate, satisfying, result (Wang & Ruhe, 2007). While there 

are methods of mapping CID decision making, the research focuses on the human 

parameters, and not necessarily on replicating the process in a machine (Bryant, 2009).  
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III. EXPERIMENTATION 

Of primary importance to testing the hypotheses is developing an interface 

capable of accepting data entry and managing the algorithms of reinforcement learning 

(RL). The configuration of the Soar agent file is kept to a minimal amount of 

complexity at this stage of research in an effort to perform proof on the concept in this 

theater of study.  

A. DEVELOPMENT OF CID RULESET 

While Soar and RL have been proven in the past to excel at a variety of tasks the 

application to real-world scenarios demands a way of communicating with Soar. Pulling 

from the inputs to CID as described in Chapter II, we can extrapolate a few concepts that 

allow for a basic model of TAO/MC decision making.  

CID is a process, with the classification of the track the end result. Since no one 

parameter leads to a full description of a track, the identification and subsequent 

classification of a track is a set of evaluations of the values for each parameter. In the 

course of interpreting a simplified CID process, we paired down the possible parameters 

to scope the project. While the factors that contribute to aircraft identification in a real-

world environment are many, as was briefly discussed in Chapter II, the scope of this trial 

is limited to a four separate criteria: coordinates of the virtual track in a three-dimensional 

physical space (x, y, z), and one Interrogation Friend or Foe (IFF) value (Mode IV). The 

physical coordinates of the track represent a single point in time and mimic the profile of 

the contact based on procedural CID methodology.  

Again, the resulting classification of a track is a combination of evaluations. 

While this could take the form of a series of “if > then” statements that allow an operator 

to achieve a classification based on the culmination, knowledge of Soar limitations due to 

the inputs to “state” requires a slightly different interpretation. There is not a method that 

allows for easy implementation of a complex compounding evaluation. Deconstructing 

the CID process to suit the Soar environment we make a few assumptions.  
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 Each parameter has an associated possibility of “hostility” or “non-
hostility” based on its evaluation. This will be initially defined as 
probability of hostility (POH). 

 The cumulative value of the POH can be used to ultimately evaluate the 
track.  

 A range of POH values can be assigned to classifications of tracks (i.e., 
hostile, non-hostile). 

Since variables are based on real-world parameters, the value set can be modified 

to suit specific geographical locations and political situations.  

Application to CID takes the form of a set of logical rules. The values are not 

based on any real world scenario or parameters but a set of rules developed to test 

hypotheses in the scope of this thesis. The first set of “if > then” statements pulls from a 

procedural CID method.  

 If the track has a determined location (x, y) less than (A, B) the POH 
assigned to that track is n1.  

 If the track has a determined location (x, y) greater than (A, B) then the 
POH assigned to the track is n2.  

 If the track has a determined altitude (z) less than C then the POH 
assigned to the track is n3. 

 If the track has a determined altitude (z) greater than C then the POH 
assigned to the track is n4.  

The following statements draw from cooperative CID methodology.  

 If the IFF Mode 4 evaluation of the track is negative then the POH 
assigned to the track is n5.  

 If the IFF Mode 4 evaluation of the track is positive then the POH 
assigned to the track is n6.  

The initial value of n will have bearing on how quickly the Soar CID Application 

establishes a “learned” profile. RL totals the n value to arrive at a cumulative 

recommendation of POH. .  

We will assign the following values to the A = 10, B = 10, C=6.  
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Therefore, an example of a track with the determined state (x=5, y=5, z=5, mode 

4 = positive) would have an evaluation as follows:  

POH = n1 + n3 + n6 

The main goal of Soar RL is to maximize rewards over time. While there are 

environmental variables that can be modified, the RL program needs to be able to change 

the reward values to learn. The remaining variable that is a candidate for a reward value 

in the proposed ruleset is n.  

While it is possible to logically assume that a lower cumulative POH would 

classify a track as less hostile, or possibly friendly, this does not work in RL. If there is 

not reward value assigned for classifying a track as non-hostile then there is no benefit 

for the system to choose that result. The system needs a balanced rule to reward the agent 

for choosing a non-hostile parameter. This will be known as probability of non-hostility 

(POHN). Therefore, each rule will have a hostile-n value (POH) and a non-hostile-n 

value (PONH). An example of the update to the previous “if > then” rules are:  

 If the track has a determined location (x, y) less than (A, B) the POH 
assigned to that track is n1.  

 If the track has a determined location (x, y) less than (A, B) the PONH 
assigned to that track is n2 

If the Soar agent suggests hostile in the two example rules, and the Operator 

agrees with the agent, it is given feedback to change the n values to reflect the Operator 

preference. The change in n1 and n2 depends on the learning policy and exploration 

algorithm selected. 

1. Basic Rules 

This leads to translating the plain language rules into Soar CID Rules. Soar CID 

Rules are created using soar programming language and parameters as described by 

REFERENCE (Laird & Congdon, 2015). In this case, the rules were numbered to best 

track their usage. For example, Rule #1 has both a hostile and non-hostile variation with 

separate n (reward values). A specific example of the translation is depicted in Table 2. 

Values assigned to A, B, and C remain as stated previously.  
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Table 2.   Plain Language to Soar Language of Rules 

Plain Language Soar Rule 

If the track has a determined location (x, y) 

less than (A, B) the POH assigned to that 

track is n1.  

sp {simple*eval*hostile*rule1 (state <s> 
^name simple ^operator <op1> + ^io.input-
link.features <f>) (<op1> ^name hostile) (<f> 
^x < 10 ^y < 10) --> (<s> ^operator <op1> = 
0.0001) } 

If the track has a determined location (x, y) 

less than (A, B) the PONH assigned to that 

track is n2 

sp {simple*eval*non-hostile*rule1 (state <s> 
^name simple ^operator <op1> + ^io.input-
link.features <f>) (<op1> ^name non-hostile) 
(<f> ^x < 10 ^y < 10) --> (<s> ^operator 
<op1> = 0.9999) }

Soar language for Rule #1 Hostile and Rule #1 Non-Hostile. POH(n1) for Rule #1 
=0.0001. POHN(n2) for Rule #1=0.9999.  

The full set of CID rules that will be used in this research and their assigned 

POH/PONH is shown in Table 3.   

Table 3.   CID Rules  

Rule Name Parameter 
Starting 

POH/PONH Values 

Rule 1 Hostile  x < 10 ; y < 10 0.0001 

Rule 1 Non-Hostile  x < 10 ; y < 10 0.9999 

Rule 2 Hostile z < 6 0.2 

Rule 2 Non-Hostile z < 6 0.8 

Rule 3 Hostile Mode 4 0.0001 

Rule 3 Non-Hostile Mode 4 0.9999 

Rule 4 Hostile x >10 ; y > 10 0.0001 

Rule 4 Non-Hostile x >10 ; y > 10 0.9999 

Rule 5 Hostile z > 6 0.2 

Rule 5 Non-Hostile z > 6 0.8 
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Rule #1 and Rule #4 are complementary, as are Rule #2 and Rule #5. Each rule 

has a Hostile and Non-Hostile variant with a corresponding reward value (POH/PONH). 

Rule #3 does not have a paired rule for non-Mode 4 parameters.  

Due to the nature of the rules, the rules are either “tripped” or not. If a track meets 

a rule’s condition, then the rule is “tripped” and assigned associated reward value/POH. 

The possible combinations of “tripped” and “non-tripped” rules sum up to eight separate 

track variations. In an effort to create a stable or ground truth about each of the tracks, an 

assignment of hostile or non-hostile has been assigned to each of the variations of tracks. 

This is in an effort to judge the veracity of the Soar/RL result as it learns against ground-

truth values. The ground-truth values and parameters of each track are given in Table 4. 

While no specific significance is placed on 12 or 5, its intention is to trip above 10 or 

below 6 based on Rules #1/4 and Rule #2/5, respectively. 

Table 4.   Ground Truth Values of Tracks 

Track # X-value Y-value Z-value MODE Hostility 
1 5 5 5 0 Y 
2 12 12 5 0 Y 
3 5 5 12 0 Y 
4 5 5 5 4 N 
5 5 5 12 4 N 
6 12 12 12 4 N 
7 12 12 5 4 N 
8 12 12 12 0 N 

For the purposes of the experiment, the truthful “hostility” is annotated. This ensures that 
the feedback is given when “training” the system is uniform and expected. “Y” means 
hostile and “N” means non-hostile.  

Since the sample size, the pool of possible track configurations, is extremely 

limited based on the scoped parameters, the repetition of tracks 1–8 is unavoidable. Data 

entry and track sampling will occur in two manners. The first is through an ordered, equal 

ratio of tracks 1–8. The second is a randomized sampling of tracks 1–8. This is done to 

compare the different environments and evaluate the results.  
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2. Reward Value-Functions 

Reward values may factor dramatically in the RL veracity in a common operating 

environment. At the beginning reward values, n, are set at a default value and then those 

values will change based on the “training” given to the RL system to reflect the operating 

environment and specifics of the theater. While the starting reward values assigned to a 

rule can be modified to suit the weight and consequence of the parameter, the starting 

value assigned to each rule in the experimentation has no correlation to real-world 

parameters.  

B. SOAR SETTINGS 

While there are a variety of different settings than can affect RL in the Soar 

environment, the experiment will first focus on default policies and rates. We then delve 

into different variations of the parameters to maximize correctness.  

The learning-policy selected for the bulk of the basic testing is SARSA. The 

initial learning rate is set at default, 0.3. This allows for a moderately fast training phase. 

Iterations of the parameters also explore a decreased learning rate in the latter stages of 

application to minimize the swing of reward values. The default exploration policy is 

softmax. Ε-greedy and boltzmann strategies will be explored and compared.  

Also, a sample testing will be generated in an effort to understand and 

demonstrate the immediate differences between the tested parameters. This sample will 

be one iteration of tracks 1–8, ordered, utilizing separate learning methods and 

exploration policies. The results will note the change in the reward value between 

different sets of parameters.  

C. SOAR CID APPLICATION  

While the Soar software suite is comprised of a set of files that are all required to 

work in concert, there are a few dynamic selections that will be addressed. The 

components of the agent folder are the rules created to support the environment.  

The Soar Cognitive Architecture has been adapted to tie into an input mechanism 

utilizing the Windows Command Prompt. A small amount of programming allows for the 
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Soar RL functions to be manipulated and controlled through an easier interface. This 

allows for relatively easy, albeit labor intensive, entry of the virtual track parameters 

(Table 4) into the Soar CID program. Although this is not realistic for shipboard usage or 

a larger sample size, this is sufficient for the scope of this thesis. An example of entry or 

Track 1 into an untrained system is shown is Figure 4. Once the Soar CID agent is 

loaded, the operator is prompted to enter track parameter values.  

Figure 4.  Soar CID—Windows Integration 

 
Example entry for Soar CID track entry. Operator separately entered x, y, z and mode 
parameters. The initial recommendation of Soar CID is displayed. Operator feedback has 
not been entered.  
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Soar recommends a classification: “Soar says: not hostile.” Below the 

recommendation are the rules that were “tripped” with specific track conditions: Rule #1 

(hostile and non-hostile), Rule #2 (hostile and non-hostile). The associated reward values 

are tallied  

The Soar CID program has been configured to display the percentage of 

probability of non-hostility and hostility based on the current reward values that in its 

memory. In the instance above, PONH = 1.7999 and POH = 0.2001. In the above case, 

Track 1 has a 90% probability of being “non-hostile” and a 10% probability of being 

“hostile.” This is a translation of the total POH and PONH beside it. The total POH + 

PONH is 2.0, 1.7999 / 2.0 = .89995 or 90%. 

The Operator next has the opportunity to view all RL rules and their associated 

reward value before proceeding to the feedback stage. The remainder of the reward 

values in current memory is shown in Figure 5.  

Figure 5.  Operator Selection of All RL Rules and Current Values. 

 
If Operator enters “y” at the prompt then all non “tripped” rules and current values will 
be displayed.  
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The final input for each track will be operator feedback. In this initial 

configuration of the Soar CID application if the operator presses “y,” then is to confirm 

that the Track entered is evaluated as “hostile.” If the track is “non-hostile” then the 

operator would enter a non “y” value. The feedback stage of Track 1 evaluation is shown 

in Figure 6. Since the initial recommendation of Track 1 was “non-hostile” (Figure 4) and 

the operator entered “y” for a “hostile” evaluation, the “decision” line depicted in Figure 

6 states “incorrect.” In this instance, Soar and the operator did not agree on the 

classification of the track.  

Figure 6.  Learning Mode of the Soar CID Application 

 
Operator feedback of “y” for hostile leads Soar to evaluate its reward valuations and 
adjust for future attempts.  

Soar CID will then apply the operator feedback in the form of modifying the 

reward values to improve future evaluations. Since Rule #1 and Rule #3 were “tripped” 

those are the reward values that are modified. Until the correct rules are accepted, 

maximizing rewards, the reward value assigned to the incorrect selection will degrade. In 

an instance of the Soar recommendation being “correct,” the reward values will increase. 

The specific calculation of reward value alteration is based on specific Soar parameters 



 24

(learning policy, exploration policy, learning rate). The operator now has the opportunity 

to test another track with the new “learned” reward values.  

In this initial version of Soar CID, there is no stored memory to build upon 

outside of one initialization in the Soar CID program. If the operator does not select, “try 

again” then the next time the program runs it will again be the “untrained” system. This 

has ramifications for the potential sample size due to operator mistakes.  

D. VARIATIONS AND SAMPLING 

Once the data from the Soar CID application has been accumulated it will be 

exported to Excel for summarization and analysis. Since there is no stored memory 

between each continuous assessment, one assessment will be referred to as a “run.” Each 

run will be a sampling of Tracks 1–8 (Table 4) in either sequential or random order, in 

various recurrences.  

As the hypotheses are based on the comparison and proving that the system 

improves, “learns,” we must first establish a baseline. The baseline will be established by 

allowing the application to run without learning. Each track will be evaluated by Soar 

CID without any feedback from the operator. The percentage of correctness based on the 

ground truth evaluations listed in Table 4 and will be established as our base value.  

Further iterations will be concerned with establishing if the system can improve or 

“learn” and modifying Soar CID RL parameters to maximize the overall correctness. This 

will be done based on the principles explored in Chapter II and in previous research. 

Balancing exploration and exploitation is crucial to developing an adaptable system 

(Tokic, 2010; Sutton & Barto, 1998). Therefore, the modification of exploration 

strategies and learning rates will help to establish the best parameters for Soar CID. 

Comparison analysis of the baseline numbers and the other variations will potentially 

show better parameter settings for this application. The samples will also be evaluated for 

statistical significance in comparison to the baseline numbers and each other.  



 25

E. PHASES OF REINFORCEMENT LEARNING APPLICATION 

In addition to data analysis of random and ordered samples, the concept of a 

teaching a system prior to placing it in operation will be evaluated. With the utilization of 

default values, conceivably, the initial stages of learning will produce less correct results 

than the latter stages; the system will learn.  

While the initial teaching of the RL system is potentially crucial to establishing a 

higher overall correctness, it is possible to export the “taught” system and establish a 

basic Soar CID agent where further usage will mean greater overall correctness and fewer 

inaccurate recommendations. The comparisons between the latter taught models will help 

to further evaluate the validity of the hypotheses. We propose two phases to Soar CID 

implementation.  

1. Learning Phase 

Numerous runs will be completed to assess when the Soar CID agent achieves a 

relatively stable state, the learning phase (LP). Due to the small sample size of the track 

pool, it is not expected to result in 100% overall correctness. The Soar CID agent file will 

then be exported for use during multiple iterations of the follow-on phase. Since the 

current Soar CID application has no in program memory, this is crucial due to the 

instability of the virtual environment. The only way to build upon the current learning is 

either to make no mistakes or to export and modify an additional Soar CID application 

with new values.  

2. Operational Phase  

After the LP, we propose an operational phase (OP). While the main idea behind 

OP is that the overall correctness metric is not influenced by the LPs inherently low 

accuracy, there are beneficial considerations that can be explored.  

Parameters of RL can be modified such that an incorrect entry during the 

feedback stage or a unique set of track parameters does not dramatically affect the reward 

values. During the OP both the exploration strategy and learning rate be modified to 

evaluate the effect on the overall results.  
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IV. DATA ANALYSIS 

A. RESULTS 

1. Baseline Results—No Learning 

The track pool analyzed without any reinforcement learning (RL) applications are 

stated in Table 5. The overall correctness of a non-learning application of the tracks is 

five correct out of eight, 62.5%. The percentage of correctness without learning is 

established as a baseline for comparison to further runs and parameter testing. 

Extrapolated to a sample size of 48 tracks, this creates a ratio of 30 out of 48 correct, in a 

sequential sampling of the track pool. 

Table 5.   Baseline Run - No Learning 

TRACK 
 # 

SOAR 
RECOMMENDATION 

GROUND 
TRUTH 

HOSTILE 
(Y/N) CORRECT

SOAR % Non-
HOSTILITY

SOAR % 
HOSTILITY 

OVERALL 
CORRECTNESS

1 Soar says: not hostile Y N 90.0% 10.0% 

62.50% 

2 Soar says: not hostile Y N 90.0% 10.0% 

3 Soar says: not hostile Y N 90.0% 10.0% 

4 Soar says: not hostile N Y 93.3% 6.7% 

5 Soar says: not hostile N Y 93.3% 6.7% 

6 Soar says: not hostile N Y 93.3% 6.7% 

7 Soar says: not hostile N Y 93.3% 6.7% 

8 Soar says: not hostile N Y 90.0% 10.0% 

The results from a Soar CID run where no RL was applied.  

2. Sequential v Random Sampling with Default Parameters  

The sequential sampling resulted in an overall correctness of 72.91%. The results 

for a run of 48 tracks are shown in Table 6, 1–8 repeating. The RL parameters are set to 

the default rates discussed in Chapter III, they include: softmax, ε 0.1, learning-rate 0.3 
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Table 6.   Run 1: Sequential Sampling, Default Parameters 

Track  
# T+ 

SOAR 
RECOMMENDATION 

GROUND 
TRUTH 

HOSTILE 
(Y/N) 

C
or

re
ct

? 

SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS

1 0 Soar says: not hostile Y N 90.0% 10.0% 

72.92% 

2 0 Soar says: not hostile Y N 87.3% 12.7% 

3 0 Soar says: not hostile Y N 87.3% 12.7% 

4 0 Soar says: not hostile N Y 86.2% 13.8% 

5 0 Soar says: not hostile N Y 89.0% 11.0% 

6 0 Soar says: not hostile N Y 90.6% 9.4% 

7 0 Soar says: not hostile N Y 87.2% 12.8% 

8 0 Soar says: not hostile N Y 80.0% 20.0% 

1 1 Soar says: hostile Y Y 33.0% 67.0% 

2 1 Soar says: hostile Y Y 61.2% 38.8% 

3 1 Soar says: not hostile N N 58.7% 41.3% 

4 1 Soar says: hostile N N 55.0% 45.0% 

5 1 Soar says: not hostile N Y 98.6% 1.4% 

6 1 Soar says: not hostile N Y 90.8% 9.2% 

7 1 Soar says: not hostile N Y 84.9% 15.1% 

8 1 Soar says: not hostile N Y 64.4% 35.6% 

1 2 Soar says: hostile Y Y 0.0% 100.0% 

2 2 Soar says: hostile Y Y 49.9% 50.1% 

3 2 Soar says: hostile Y Y 22.0% 78.0% 

4 2 Soar says: hostile N N 55.4% 44.6% 

5 2 Soar says: not hostile N Y 94.9% 5.1% 

6 2 Soar says: not hostile N Y 88.8% 11.2% 

7 2 Soar says: not hostile N Y 86.0% 14.0% 

8 2 Soar says: not hostile N Y 55.0% 45.0% 

1 3 Soar says: hostile Y Y 0.0% 100.0% 

2 3 Soar says: not hostile Y N 44.4% 55.6% 

3 3 Soar says: hostile Y Y 22.8% 77.2% 

4 3 Soar says: hostile N N 52.3% 47.7% 

5 3 Soar says: not hostile N Y 95.1% 4.9% 

6 3 Soar says: not hostile N Y 90.1% 9.9% 

7 3 Soar says: not hostile N Y 97.4% 2.6% 

8 3 Soar says: hostile N N 46.7% 53.3% 

1 4 Soar says: hostile Y Y 0.0% 100.0% 

2 4 Soar says: not hostile Y N 17.5% 82.5% 

3 4 Soar says: not hostile Y N 29.8% 70.2% 
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Track  
# T+ 

SOAR 
RECOMMENDATION 

GROUND 
TRUTH 

HOSTILE 
(Y/N) 

C
or

re
ct

? 

SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS

4 4 Soar says: hostile N N 45.4% 54.6% 

5 4 Soar says: not hostile N Y 100.0% 0.0% 

6 4 Soar says: not hostile N Y 100.0% 0.0% 

7 4 Soar says: not hostile N Y 100.0% 0.0% 

8 4 Soar says: not hostile N Y 72.9% 27.1% 

1 5 Soar says: hostile Y Y 0.0% 100.0% 

2 5 Soar says: hostile Y Y 0.0% 100.0% 

3 5 Soar says: hostile Y Y 2.4% 97.6% 

4 5 Soar says: not hostile N Y 60.7% 39.3% 

5 5 Soar says: not hostile N Y 100.0% 0.0% 

6 5 Soar says: not hostile N Y 100.0% 0.0% 

7 5 Soar says: not hostile N Y 100.0% 0.0% 

8 5 Soar says: hostile N N 58.5% 41.5% 

 

The randomly ordered sampling resulted in an overall correctness of 77.08% 

which is displayed in Table 7.  

Table 7.   Run 2: Randomized Sampling, Default Parameters 

Track 
# 

SOAR 
RECOMMENDATION 

GROUND 
TRUTH 

HOSTILE 
(Y/N) 

Correct
? 

SOAR % 
Non-

HOSTILITY 
SOAR % 

HOSTILITY CORRECTNESS

2 Soar says: not hostile Y N 90.0% 10.0% 

77.08% 

3 Soar says: not hostile Y N 87.3% 12.7% 

4 Soar says: not hostile Y N 87.3% 12.7% 

5 Soar says: not hostile N Y 86.2% 13.8% 

6 Soar says: hostile N N 89.0% 11.0% 

7 Soar says: not hostile N Y 100.0% 0.0% 

8 Soar says: not hostile N Y 94.6% 5.4% 

8 Soar says: not hostile N Y 91.2% 8.8% 

8 Soar says: not hostile N Y 91.7% 8.3% 

1 Soar says: not hostile Y Y 92.0% 8.0% 

4 Soar says: hostile N Y 66.1% 33.9% 

5 Soar says: not hostile N Y 80.7% 19.3% 

6 Soar says: not hostile N Y 100.0% 0.0% 

1 Soar says: not hostile Y N 30.9% 69.1% 
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Track 
# 

SOAR 
RECOMMENDATION 

GROUND 
TRUTH 

HOSTILE 
(Y/N) 

Correct
? 

SOAR % 
Non-

HOSTILITY 
SOAR % 

HOSTILITY CORRECTNESS

3 Soar says: not hostile Y N 100.0% 0.0% 

8 Soar says: not hostile N Y 88.0% 12.0% 

2 Soar says: hostile Y Y 48.7% 51.3% 

2 Soar says: hostile Y Y 37.5% 62.5% 

8 Soar says: not hostile N Y 74.1% 25.9% 

2 Soar says: hostile Y Y 35.1% 64.9% 

7 Soar says: not hostile N Y 63.1% 36.9% 

6 Soar says: not hostile N Y 89.6% 10.4% 

6 Soar says: not hostile N Y 88.5% 11.5% 

8 Soar says: hostile N N 67.1% 32.9% 

2 Soar says: hostile Y Y 30.3% 69.7% 

2 Soar says: hostile Y Y 26.3% 73.7% 

8 Soar says: not hostile N Y 97.5% 2.5% 

2 Soar says: hostile Y Y 28.1% 71.9% 

7 Soar says: not hostile N Y 56.7% 43.3% 

6 Soar says: not hostile N Y 100.0% 0.0% 

6 Soar says: not hostile N Y 100.0% 0.0% 

1 Soar says: hostile Y Y 0.0% 100.0% 

5 Soar says: not hostile N Y 100.0% 0.0% 

4 Soar says: hostile N N 100.0% 0.0% 

4 Soar says: not hostile N Y 100.0% 0.0% 

7 Soar says: hostile N N 66.8% 32.2% 

2 Soar says: hostile Y Y 36.4% 63.6% 

3 Soar says: hostile Y N 50.0% 50.0% 

8 Soar says: hostile N Y 74.2% 25.8% 

2 Soar says: hostile Y Y 36.8% 63.2% 

8 Soar says: not hostile N Y 0.0% 100.0% 

1 Soar says: hostile Y Y 0.0% 100.0% 

6 Soar says: not hostile N Y 100.0% 0.0% 

1 Soar says: hostile Y Y 0.0% 100.0% 

4 Soar says: hostile N N 20.0% 80.0% 

4 Soar says: not hostile N Y 100.0% 0.0% 

5 Soar says: not hostile N Y 100.0% 0.0% 

2 Soar says: not hostile Y Y 41.7% 58.3% 
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Both sequential and randomized samples of the similar sample size exceed the 

baseline, non-learning proportion of overall correctness. The average improvement in 

overall correctness is 12.5%.  

1. Statement of Hypothesis 

In order to ultimately answer the research question stated in Chapter I, the 

problem will be analyzed by a hypothesis based on the central idea of RL: reward values. 

As the reward values continue to change through the operator/agent relationship and 

training, does this affect the overall accuracy of the Soar decision? Basically, does the 

system learn?  

From that research question, we are proposing a hypothesis for analysis. In an 

attempt to establish proof of concept the hypothesis will concentrate on whether the 

outcome is affected. If the system displays a capacity to deliver increasing overall 

correctness, the system will have “learned.” To accept that the system “learned,” we must 

first consider that the incorporation of RL and CID was not successful (i.e., our null 

hypothesis).   

a. Hypotheses Ho 

Incorporation of reinforcement learning/reward values into combat 

identification functions will decrease or not change the validity of the 

recommended action/identification provided. 

Therefore if the overall correctness of CID problems is increased by the 

incorporation of RL and associated reward values the alternative would be the following 

statement.  

b. Hypothesis Ha 

Incorporation of reinforcement learning/reward values will increase the 

validity of the recommended action/identification provided. 
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The system will have learned if the data can be proven to be significant with 95% 

certainty. With an established alpha value of 0.05 the corresponding probability (p-value) 

will need to be less than or equal to alpha.   

As discussed, the data sample size is small but the corresponding probability of 

the non-learning baseline to Run 1 and Run 2 is p=0.1375 and p=0.0599, respectively. 

The p-values were calculated via the statistical proportions tools on vassarstats.net. In the 

initial testing, both p-values for Run 1 and Run 2 fail the established acceptable 

threshold.    

4. Learning Phase Results

After multiple iterations of ordered sampling, the optimal combination resulted 

from an ordered sampling of four sets of tracks, totaling 32 total samples. Although the 

overall correctness is less than the results depicted in Run 2 (Table 7), the resulting 

reward values allowed for greater overall correctness in subsequent runs. The learning 

phase (LP) results are stated in Table 8. Sampled in segments of eight, the results 

fluctuate but eventually stabilize.  

Table 8.   Run 3. Learning Phase Results  

Track 
# 

SOAR 
RECOMMENDATION 

GROUND 
TRUTH 

HOSTILE? 
(Y/N) CORRECT? 

SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS

1 Soar says: not hostile Y N 90.0% 10.0% 

65.63% 

2 Soar says: not hostile Y N 87.3% 12.7% 

3 Soar says: not hostile Y N 87.3% 12.7% 

4 Soar says: hostile N N 86.2% 13.8% 

5 Soar says: not hostile N Y 100.0% 0.0% 

6 Soar says: not hostile N Y 96.1% 3.9% 

7 Soar says: not hostile N Y 100.0% 0.0% 

8 Soar says: not hostile N Y 79.7% 20.3% 

1 Soar says: not hostile Y N 100.0% 0.0% 

2 Soar says: not hostile Y N 81.4% 18.6% 

3 Soar says: not hostile Y N 78.8% 21.2% 

4 Soar says: not hostile N Y 100.0% 0.0% 

5 Soar says: not hostile N Y 100.0% 0.0% 



33

Track 
# 

SOAR 
RECOMMENDATION 

GROUND 
TRUTH 

HOSTILE? 
(Y/N) CORRECT? 

SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS

6 Soar says: not hostile N Y 94.4% 5.6% 

7 Soar says: not hostile N Y 100.0% 0.0% 

8 Soar says: not hostile N Y 67.3% 32.7% 

1 Soar says: hostile Y Y 50.0% 50.0% 

2 Soar says: hostile Y Y 31.6% 68.4% 

3 Soar says: hostile Y Y 22.5% 77.5% 

4 Soar says: not hostile N Y 54.7% 45.3% 

5 Soar says: not hostile N Y 75.2% 24.8% 

6 Soar says: not hostile N Y 82.9% 17.1% 

7 Soar says: not hostile N Y 74.0% 26.0% 

8 Soar says: hostile N N 53.0% 47.0% 

1 Soar says: hostile Y Y 0.0% 100.0% 

2 Soar says: not hostile Y N 26.3% 73.7% 

3 Soar says: hostile Y Y 16.1% 83.9% 

4 Soar says: not hostile N Y 38.7% 61.3% 

5 Soar says: hostile N N 72.1% 27.9% 

6 Soar says: not hostile N Y 100.0% 0.0% 

7 Soar says: hostile N N 91.8% 8.2% 

8 Soar says: not hostile N Y 100.0% 0.0% 

5. Operational Phase Results

The first attempt at maximization of the operational phase (OP) utilized the 

default parameters as discussed in Chapter III. The results show a marked improvement 

over the base correctness of 62.5% as shown in Table 9. Once the LP was loaded, the OP 

operated on the rewards values produced from Table 8.  

Table 9.   Run 4: Operational Phase, Random Ordering, Default 

Track 
# 

SOAR 
RECOMMENDATION 

GROUND 
TRUTH 

HOSTILE? 
(Y/N) CORRECT?  

SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS 

1 Soar says: hostile Y Y 0.0% 100.0% 

91.9% 2 Soar says: hostile Y Y 0.0% 100.0% 

6 Soar says: not hostile N Y 100.0% 0.0% 
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Track 
# 

SOAR 
RECOMMENDATION 

GROUND 
TRUTH 

HOSTILE? 
(Y/N) CORRECT?  

SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS 

4 Soar says: not hostile N Y 55.8% 44.2% 

5 Soar says: not hostile N Y 100.0% 0.0% 

3 Soar says: not hostile Y N 37.3% 62.7% 

8 Soar says: not hostile N Y 100.0% 0.0% 

3 Soar says: hostile Y Y 0.0% 100.0% 

8 Soar says: not hostile N Y 85.2% 14.8% 

5 Soar says: not hostile N Y 85.6% 14.4% 

1 Soar says: hostile Y Y 0.0% 100.0% 

5 Soar says: not hostile N Y 84.5% 15.5% 

8 Soar says: not hostile N Y 88.9% 11.1% 

5 Soar says: not hostile N Y 85.4% 14.6% 

5 Soar says: not hostile N Y 85.3% 14.7% 

2 Soar says: not hostile Y N 29.9% 70.1% 

5 Soar says: not hostile N Y 85.2% 14.8% 

4 Soar says: hostile N N 34.5% 65.5% 

2 Soar says: hostile Y Y 0.0% 100.0% 

7 Soar says: not hostile N Y 100.0% 0.0% 

4 Soar says: not hostile N Y 64.3% 35.7% 

5 Soar says: not hostile N Y 100.0% 0.0% 

8 Soar says: not hostile N Y 75.4% 24.6% 

2 Soar says: hostile Y Y 3.3% 96.7% 

5 Soar says: not hostile N Y 100.0% 0.0% 

1 Soar says: hostile Y Y 0.0% 100.0% 

4 Soar says: not hostile N Y 58.8% 41.2% 

7 Soar says: not hostile N Y 86.9% 13.1% 

2 Soar says: hostile Y Y 7.1% 92.9% 

1 Soar says: hostile Y Y 0.0% 100.0% 

2 Soar says: hostile Y Y  0.0% 100.0% 

6  Soar says: not hostile N Y 100.0% 0.0% 

6 Soar says: not hostile N Y 100.0% 0.0% 

4 Soar says: not hostile N Y 47.3% 52.7% 

7 Soar says: not hostile N Y 71.8% 28.2% 

4 Soar says: hostile N N 60.3% 39.7% 

8 Soar says: not hostile N Y 54.4% 45.6% 

2 Soar says: hostile Y Y 0.0% 100.0% 

5 Soar says: not hostile N Y 100.0% 0.0% 

1 Soar says: hostile Y Y 0.0% 100.0% 

2 Soar says: hostile Y Y 0.0% 100.0% 
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Track 
# 

SOAR 
RECOMMENDATION 

GROUND 
TRUTH 

HOSTILE? 
(Y/N) CORRECT?  

SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS 

1 Soar says: hostile Y Y 0.0% 100.0% 

1 Soar says: hostile Y Y 0.0% 100.0% 

4 Soar says: not hostile N Y 69.1% 30.9% 

6 Soar says: not hostile N Y 100.0% 0.0% 

8 Soar says: not hostile N Y 51.7% 48.3% 

2 Soar says: hostile Y Y 0.0% 100.0% 

6 Soar says: not hostile N Y 100.0% 0.0% 

1 Soar says: hostile Y Y 0.0% 100.0% 

4 Soar says: not hostile N Y 67.0% 33.0% 

4 Soar says: not hostile N Y 71.2% 28.8% 

1 Soar says: hostile Y Y 0.0% 100.0% 

4 Soar says: not hostile N Y 72.5% 27.5% 

2 Soar says: hostile Y Y 0.0% 100.0% 

8 Soar says: not hostile N Y 54.0% 46.0% 

3 Soar says: hostile Y Y 50.7% 49.3% 

3 Soar says: not hostile Y N 41.7% 58.3% 

4 Soar says: not hostile N Y 61.9% 38.1% 

2 Soar says: hostile Y Y 9.0% 91.0% 

4 Soar says: not hostile N Y 65.2% 34.8% 

6 Soar says: not hostile N Y 100.0% 0.0% 

8 Soar says: not hostile N Y 39.2% 60.8% 

2 Soar says: hostile Y Y 15.0% 85.0% 

5 Soar says: not hostile N Y 100.0% 0.0% 

2 Soar says: hostile Y Y 15.0% 85.0% 

8 Soar says: not hostile N Y 50.4% 49.6% 

6 Soar says: not hostile N Y 100.0% 0.0% 

8 Soar says: hostile N N 51.0% 49.0% 

8 Soar says: not hostile N Y 90.7% 9.3% 

7 Soar says: not hostile N Y 92.2% 7.8% 

4 Soar says: not hostile N Y 61.3% 38.7% 

3 Soar says: hostile Y Y 35.0% 65.0% 

The next OP testing used the same LP phase but changed the ε value to 0.05. 

Although the sample as still randomized, the overall correctness remained relatively 

stable but decreased slightly from 91.9% to 88.9%. A comparison of OP variations in 

multiple exploration strategies and parameters is featured in Table 10. While Runs 4, 5, 
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and 6 are similarly high in the overall correctness metric, Run 7 falls short of even the 

untrained baseline, 48.0% to 62.5%.  

Table 10.   Operational Phase Parameter Exploration 

Learning 
Policy  

Exploration 
Strategy Epsilon 

Learning 
Rate 

Overall 
Correctness 

Sample 
Size 

SARSA SOFTMAX 0.1 0.3 91.89% 74 

SARSA SOFTMAX 0.05 0.3 88.89% 99 

SARSA GREEDY 0.1 0.3 91.00% 100 

SARSA BOLTZMANN 0.1 0.3 48.00% 100 

A comparison of the exploration strategies applied in the OP. Run 5 (Appendix A) Run 6 
(Appendix B) Run 7 (Appendix C) 

6. Anomalies and Unexpected Results

While the preponderance of track iteration evaluations yielded results that 

logically paired with their POH/PONH and percentage, there were a few iterations in 

which Soar recommended the alternative classification, against obvious rewards. An 

example is Line 31 (Appendix A.) The percentage of PONH (53.9%) is higher than the 

POH (46.1%), but Soar recommended hostile. The ground-truth of this track is non-

hostile. The system deliberately went contrary to the maximized reward and percentage. 

This occurred a few times in each Run, the percentage between the two, POH/PONH, is 

relatively close, in the 10% range overall. This has a direct correlation to the ε value 

chosen for the implementation. The system will continue to explore its environment with 

an element of randomness. While utilizing an ε value greater than 0, there will always be 

a number of agent-recommended decisions that are contrary to the percentage 

POH/PONH. As the environment, or area of responsibility, is fully explored, the benefit 

of maintaining an ε could decrease.    

The Boltzmann implementation leads toward a significantly lower overall 

correctness than the other exploration strategies as depicted in Table 10. This is most 

likely a product of an unnecessarily high temperature for this particular employment. As 

the temperature approaches zero, the results should mimic greedy strategies more closely. 

The higher the temperature the more likely the recommended actions are to be equally 
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probable (Tokic, 2010). Therefore, the recommended action is not necessarily what has 

the highest reward value, and the system does not get rewarded as frequently, which 

would alter the upwards progression seen in other runs.      

B. HYPOTHESES ANALYSIS 

The methodology involved in the analysis primarily depended on comparison of 

pre-learning metrics to post-learning metrics, overall correctness of evaluations. What 

performance did the Soar CID application exhibit prior to RL and how did that compare 

to when RL was enabled?  

While it is possible to achieve a relatively stable overall correctness from the 

beginning by modifying the POH and PONH values to reflect proportionate rewards 

values based on expected CID metrics, the usage of arbitrary numbers as initial reward 

values proves that learning has occurred. Baseline non-learning overall correctness was 

62.5%, as shown there were multiple configurations of Soar CID parameters that 

increased the overall correctness. All but one Run of RL implementation showed an 

improvement over a baseline non-RL sample. The variety of settings and methods 

available in Soar makes this a powerful tool, but it is imperative to pair the correct 

parameter settings with the task.   

The improvement of the separate RL parameter settings is shown in Figure 7. The 

outlier that does not improve within the same sample is the Boltzmann configuration in 

Run 7 (Appendix C). As discussed earlier, this may be due to an inappropriately high 

temperature setting; further testing should be done to confirm the effect on performance 

of a lower temperature. As the temperature decreases the Boltzmann algorithm should act 

more and more like greedy method with a low epsilon.  It is possible that a Boltzmann 

strategy could be useful in this context but this research was not able to thoroughly 

explore it to ultimately verify it as an acceptable RL strategy for CID.    
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Figure 7.  CID Learning Comparison 

 
Comparison analysis of Runs. Run 3 (LP) not pictured. Run 4–7(OP) first four points are 
representative of Run 3 (LP). Shows increase in overall correctness for the majority of 
the parameter selections.  

Statistical analysis of the overall correctness will include both the LP and OP. The 

one-tail p-value for non-learning sample to combined LP and OP Run 4 is p = 0.0027. 

Run 6 had the highest overall LP/OP due to the amount of sampling (100); p = 0.0006. 

We reject the null hypothesis since the p-values were less than the alpha value of 0.05 

with the exception of Run 7, p=.1206), which was most likely due to an inflated 

temperature value. Further testing should be completed to explore the effects of lower 

temperature values on the data. The integration of RL into a rudimentary CID problem 

was successful. The implementation of a RL/CID system succeeded in a simplistic 

mimicry of the operator. While the overall correctness was not 100% the improvement 

displayed from a baseline system to a “learned” system shows that a CID system based 

on RL is feasible.    
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V. CONCLUSIONS 

A. SUMMARIZATION OF RESULTS 

The research question posed in Chapter I was if Reinforcement Learning (RL) can 

be used effectively for the process of Combat Identification (CID). After developing a 

basic CID decision-making language, the data developed through the Soar CID 

Application proved that there is an increase in overall accuracy when RL functions are 

used. In the continuous Runs (Tables 6 and 7) from untrained to trained, the improvement 

was small but present, an average improvement from 62.5% to 75.0%. The segregation of 

phases, to reflect an untrained system LP (learning phase) and a trained system OP 

(operational phase) were instrumental in proving marked improvement of the system and 

a reflection of traditional RL performance (Figure 3).  

Although the original reward value assignments were not based on any relevant 

information, the feedback of the operator correctly altered the probability of hostility 

(POH) and the probability of non-hostility (PONH) to reflect the ground-truth 

classification of the tracks at a best overall correctness of 91.89%.  

While the data did display an increase in overall correctness, the parameter 

modification for data analysis did not lead to any dramatic epiphanies. The sample size 

and limited variation of tracks, while an ultimately significant increase, limits the 

conclusion that one learning method, exploration policy, and learning rate is inherently 

better than another. RL can be used in conjunction with CID, but there is no definitive 

combination of parameters that can be identified based on the data.  

B. RECOMMENDATION FOR FUTURE RESEARCH 

The information gathered in this thesis just scratched the surface of possibilities 

available to the tools: Soar and RL. At this basic level, proof of concept has been 

established, but the next steps should verify the results with a larger data set and confirm 

learning with a more dynamic set of CID Rules. In order to continue development of a 

Soar CID Application, we recommend the following be completed as the research 

continues:  
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 Develop a user interface friendlier to virtual track injection.  

 Increase the Ruleset to more accurately portray real life CID parameters. 

 Continue parameter evaluation for best fit of CID correctness (i.e. 
Learning Policy, Rate, and Exploration Strategy). 

 Construct track memory for the Soar CID Application.  

 Develop automated interface for systems’ inputs into Soar CID 
Application.  

 Establish doctrine and policy for integration aboard real world systems.  

1. Increase Scale and Complexity 

The primary limitations of this research are complexity and scale, as discussed in 

previous chapters of this thesis. Without a fully vetted and robust ROE and 

complementary CID matrix it is impossible to fully understand the benefits and uses of 

SOAR as a decision aid to the TAO/MC in an operational environment. By increasing the 

CID matrix the variation of tracks also increases, allowing for more rules and more of a 

sample pool. This will be imperative to test in future research. Can a Soar CID 

application keep up with a dynamic number track varieties? 

Additionally, the basic rules in this research were limited to one or the other, 

“non-hostile” or “hostile.” As the complexity increases, consideration should be given to 

evaluating other classifications of tracks within the Soar CID application environment 

and rules, such as developing a variation on “non-hostile” rule for “neutral.” An 

additional possibility is to develop a scale of hostility based on the POH and PONH 

values. A neutral track could be a certain value of POH or PONH based on real world 

parameters.  

Translating CID functions from plain language to Soar CID Agent language may 

not be applicable to all of the possible variables that contribute to CID, but as discussed 

in Chapter III, it could be used to expand the current model for further testing of 

robustness. While the “tripped” or “not-tripped” concept proved suitable in this scenario, 

more complex evaluations based on intelligence CID may not translate as fluidly. As the 
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complexity of the ROE and CID increase the usefulness of a plain language method will 

be verified or disproved.  

2. Program Modifications and Extensions 

Soar CID is a basic program that does not take advantage of all of the technology 

available today. The Soar Cognitive Architecture is a versatile program that can be 

modified in a multitude of means.  

One major limitation of the Soar CID Application as it stands is the lack of track 

memory. This constraint affects the CID process in a few different manners. When the 

identification variables for a contact are first established, they may not paint a complete 

picture of the aircraft. As the aircraft continues to operate more identification features 

may become apparent. As an example, one of the procedural methods of CID discussed 

in Chapter II is based verifying a flight profile, Return to Force. Without a comparison of 

flight data at continuous times (t0, t1, t2, t3...), it may be impossible to accurately identify 

the profile.  

While this research limited Soar to interaction with only one other program, 

Windows Command Prompt, it is possible to write extensions that integrate Soar with 

other computer programs, which could aid CID evaluations. For instance, Interrogation 

Friend or Foe (IFF) is a dynamic tool that can lead to an aircraft identifying itself, Mode 

S, the return could be verified against a public source or database prior to inject of the 

state conditions to the decision-making agent. The additional database information may 

be the solution to supplementing any plain language rule construction as discussed above.  

3. Weapons System Integration  

Developing an interface that automatically injects the sensor values of tracks is 

one of the first steps to operational usage. The manual entry of track data limitation in the 

initial Soar CID program is not conducive to operational usage. Further testing in a 

virtual environment, should require the same improvement to increase realism and 

allowable sample size.  
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Consideration should be given to whether or not a Soar CID application is 

appropriate to an operational environment, and in which manner is the least intrusive to 

the warfighter. As the research continues, whether a fully “trained” system should be sent 

directly to operational usage or trained onsite with the rules of engagement appropriate to 

the theater of operations in mind. Also, if the system should continue to be “trained” 

when in operational use, updated offline, or stagnate.  

4. Parameter and Value Experimentation  

While this research has been conducted using a few variations of parameters of 

which Soar is capable, further research should continue to explore the possible benefits of 

one learning type over another. Testing the data against a series of exploration strategies 

using Q-learning over SARSA should be done first.  

In Chapter II, we briefly discussed the learning rate modifications. Although this 

thesis did not delve into the adjustment of the learning rate, consideration should be given 

to operational usage. As discussed in the previous section, depending on how the Soar 

CID application would be used operationally, the system can learn at a lower rate, or not 

at all, in the OP. The selection should depend on the volatility of the environment and the 

trust of the CID operators. If there are no circumstances in the operating environment 

with which the RL system does not deftly deal, then there is no reason to leave the 

learning rate relatively high.  

Chapter II briefly discussed parameters and features available in RL and through 

Soar, while the experimentation limited characteristics of RL based on scale it would be 

beneficial for future research to thoroughly vet all of the functions for best application to 

real world situations. This should be done more thoroughly with a more complex CID 

Ruleset prior to further implementation.  
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APPENDIX A.  RUN 5. OPERATIONAL PHASE, EPSILON .05 

LINE TRACK # 
SOAR 

RECOMMENDATION 
HOSTILE? 

(Y/N) Correct? 
SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS 

1 3 Soar says: not hostile Y N 45.8% 54.2% 

88.89% 

2 1 Soar says: hostile Y Y 0.0% 100.0% 

3 7 Soar says: not hostile N Y 100.0% 0.0% 

4 7 Soar says: not hostile N Y 100.0% 0.0% 

5 7 Soar says: not hostile N Y 100.0% 0.0% 

6 2 Soar says: hostile Y Y 0.0% 100.0% 

7 4 Soar says: hostile N N 52.2% 47.8% 

8 3 Soar says: hostile Y Y 0.0% 100.0% 

9 1 Soar says: hostile Y Y 0.0% 100.0% 

10 2 Soar says: hostile Y Y 0.0% 100.0% 

11 8 Soar says: not hostile N Y 63.5% 36.5% 

12 7 Soar says: not hostile N Y 96.7% 3.3% 

13 1 Soar says: hostile Y Y 0.0% 100.0% 

14 4 Soar says: hostile N N 54.0% 46.0% 

15 4 Soar says: not hostile N Y 100.0% 0.0% 

16 8 Soar says: not hostile N Y 73.1% 26.9% 

17 5 Soar says: not hostile N Y 100.0% 0.0% 

18 1 Soar says: hostile Y Y 0.0% 100.0% 

19 5 Soar says: not hostile N Y 100.0% 0.0% 

20 7 Soar says: not hostile N Y 100.0% 0.0% 

21 7 Soar says: not hostile N Y 100.0% 0.0% 

22 7 Soar says: not hostile N Y 100.0% 0.0% 

23 6 Soar says: not hostile N Y 100.0% 0.0% 

24 2 Soar says: hostile Y Y 12.8% 87.2% 

25 8 Soar says: not hostile N Y 65.0% 35.0% 

26 3 Soar says: hostile Y Y 13.2% 86.8% 

27 6 Soar says: not hostile N Y 100.0% 0.0% 

28 6 Soar says: not hostile N Y 100.0% 0.0% 

29 6 Soar says: not hostile N Y 100.0% 0.0% 

30 1 Soar says: hostile Y Y 0.0% 100.0% 

31 8 Soar says: hostile N N 53.9% 46.1% 

32 8 Soar says: not hostile N Y 100.0% 0.0% 

33 8 Soar says: not hostile N Y 100.0% 0.0% 

34 3 Soar says: hostile Y Y 18.7% 81.3% 

35 1 Soar says: hostile Y Y 0.0% 100.0% 

36 8 Soar says: not hostile N Y 94.8% 5.2% 

37 3 Soar says: hostile Y Y 19.0% 81.0% 

38 4 Soar says: hostile N N 43.3% 56.7% 

39 2 Soar says: hostile Y Y 41.1% 58.9% 

40 2 Soar says: hostile Y Y 29.6% 70.4% 

41 1 Soar says: hostile Y Y 0.0% 100.0% 

42 2 Soar says: hostile Y Y 24.6% 75.4% 

43 8 Soar says: hostile N N 71.1% 28.9% 

44 7 Soar says: not hostile N Y 100.0% 0.0% 

45 4 Soar says: hostile N N 58.3% 41.7% 
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LINE TRACK # 
SOAR 

RECOMMENDATION 
HOSTILE? 

(Y/N) Correct? 
SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS 

46 7 Soar says: not hostile N Y 100.0% 0.0% 

47 5 Soar says: not hostile N Y 100.0% 0.0% 

 

48 8 Soar says: not hostile N Y 100.0% 0.0% 

49 3 Soar says: hostile Y Y 42.1% 57.9% 

50 1 Soar says: hostile Y Y 0.0% 100.0% 

51 7 Soar says: not hostile N Y 100.0% 0.0% 

52 1 Soar says: hostile Y Y 0.0% 100.0% 

53 4 Soar says: not hostile N Y 91.1% 8.9% 

54 5 Soar says: not hostile N Y 100.0% 0.0% 

55 4 Soar says: not hostile N Y 94.0% 6.0% 

56 7 Soar says: not hostile N Y 100.0% 0.0% 

57 3 Soar says: hostile Y Y 35.6% 64.4% 

58 4 Soar says: not hostile N Y 85.2% 14.8% 

59 3 Soar says: hostile Y Y 32.7% 67.3% 

60 7 Soar says: not hostile N Y 100.0% 0.0% 

61 1 Soar says: hostile Y Y 0.0% 100.0% 

62 8 Soar says: not hostile N Y 83.0% 17.0% 

63 5 Soar says: not hostile N Y 100.0% 0.0% 

64 8 Soar says: not hostile N Y 83.6% 16.4% 

65 5 Soar says: not hostile N Y 100.0% 0.0% 

66 2 Soar says: not hostile Y N 43.2% 56.8% 

67 2 Soar says: hostile Y Y 0.0% 100.0% 

68 1 Soar says: hostile Y Y 0.0% 100.0% 

69 4 Soar says: not hostile N Y 69.1% 30.9% 

70 4 Soar says: not hostile N Y 76.4% 23.6% 
71 2 Soar says: hostile Y Y 7.5% 92.5% 

72 2 Soar says: hostile Y Y 6.4% 93.6% 

73 7 Soar says: not hostile N Y 100.0% 0.0% 

74 3 Soar says: hostile Y Y 35.1% 64.9% 

75 4 Soar says: hostile N N 68.9% 31.1% 

76 5 Soar says: not hostile N Y 100.0% 0.0% 

77 5 Soar says: not hostile N Y 100.0% 0.0% 

78 8 Soar says: not hostile N Y 61.5% 38.5% 

79 4 Soar says: not hostile N Y 100.0% 0.0% 

80 5 Soar says: not hostile N Y 100.0% 0.0% 

81 8 Soar says: hostile N N 64.5% 35.5% 

82 4 Soar says: not hostile N Y 100.0% 0.0% 

83 2 Soar says: hostile Y Y 28.4% 71.6% 

84 1 Soar says: hostile Y Y 0.0% 100.0% 

85 7 Soar says: not hostile N Y 100.0% 0.0% 

86 7 Soar says: not hostile N Y 100.0% 0.0% 

87 3 Soar says: not hostile Y N 43.4% 56.6% 

88 5 Soar says: not hostile N Y 100.0% 0.0% 

89 5 Soar says: not hostile N Y 100.0% 0.0% 

90 5 Soar says: not hostile N Y 100.0% 0.0% 

91 2 Soar says: hostile Y Y 19.3% 80.7% 

92 6 Soar says: not hostile N Y 100.0% 0.0% 

93 8 Soar says: not hostile N Y 79.7% 20.3% 

94 8 Soar says: not hostile N Y 84.7% 15.3% 
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LINE TRACK # 
SOAR 

RECOMMENDATION 
HOSTILE? 

(Y/N) Correct? 
SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS 

95 1 Soar says: hostile Y Y 0.0% 100.0% 

96 8 Soar says: not hostile N Y 87.0% 13.0% 

97 2 Soar says: hostile Y Y 28.9% 71.1% 

98 3 Soar says: hostile Y Y 26.0% 74.0% 

99 2 Soar says: hostile Y Y 26.7% 73.3% 
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APPENDIX B.  RUN 6. OPERATIONAL PHASE, GREEDY 

 

LINE 
TRACK 

# 
SOAR 

RECOMMENDATION 
HOSTILE? 

(Y/N) Correct? 

SOAR % 
Non-

HOSTILITY 
SOAR % 

HOSTILITY CORRECTNESS 

1 4 Soar says: hostile N N 95.0% 5.0% 

62.5% 

2 8 Soar says: hostile N N 95.0% 5.0% 

3 8 Soar says: not hostile N Y 95.0% 5.0% 

4 4 Soar says: not hostile N Y 95.0% 5.0% 

5 6 Soar says: not hostile N Y 95.0% 5.0% 

6 2 Soar says: not hostile Y N 95.0% 5.0% 

7 5 Soar says: not hostile N Y 95.0% 5.0% 

8 4 Soar says: not hostile N Y 95.0% 5.0% 

9 2 Soar says: hostile Y Y 5.0% 95.0% 

75.0% 

10 5 Soar says: not hostile N Y 95.0% 5.0% 

11 4 Soar says: not hostile N Y 95.0% 5.0% 

12 2 Soar says: not hostile Y N 5.0% 95.0% 

13 8 Soar says: not hostile N Y 95.0% 5.0% 

14 6 Soar says: not hostile N Y 95.0% 5.0% 

15 3 Soar says: not hostile Y N 95.0% 5.0% 

16 1 Soar says: hostile Y Y 5.0% 95.0% 

17 5 Soar says: not hostile N Y 95.0% 5.0% 

100.0% 

18 3 Soar says: hostile Y Y 5.0% 95.0% 

19 4 Soar says: not hostile N Y 95.0% 5.0% 

20 1 Soar says: hostile Y Y 5.0% 95.0% 

21 6 Soar says: not hostile N Y 95.0% 5.0% 

22 1 Soar says: hostile Y Y 5.0% 95.0% 

23 1 Soar says: hostile Y Y 5.0% 95.0% 

24 4 Soar says: not hostile N Y 95.0% 5.0% 

25 6 Soar says: hostile N N 95.0% 5.0% 

87.5% 

26 3 Soar says: hostile Y Y 5.0% 95.0% 

27 4 Soar says: not hostile N Y 95.0% 5.0% 

28 3 Soar says: hostile Y Y 5.0% 95.0% 

29 4 Soar says: not hostile N Y 95.0% 5.0% 

30 2 Soar says: hostile Y Y 5.0% 95.0% 

31 8 Soar says: not hostile N Y 95.0% 5.0% 

32 7 Soar says: not hostile N Y 95.0% 5.0% 

33 2 Soar says: hostile Y Y 5.0% 95.0% 

100.0% 

34 8 Soar says: not hostile N Y 95.0% 5.0% 

35 2 Soar says: hostile Y Y 5.0% 95.0% 

36 7 Soar says: not hostile N Y 95.0% 5.0% 

37 1 Soar says: hostile Y Y 5.0% 95.0% 

38 3 Soar says: hostile Y Y 5.0% 95.0% 

39 1 Soar says: hostile Y Y 5.0% 95.0% 

40 8 Soar says: not hostile N Y 95.0% 5.0% 

41 4 Soar says: not hostile N Y 95.0% 5.0% 
100.0% 42 2 Soar says: hostile Y Y 5.0% 95.0% 

43 5 Soar says: not hostile N Y 95.0% 5.0% 
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LINE 
TRACK 

# 
SOAR 

RECOMMENDATION 
HOSTILE? 

(Y/N) Correct? 

SOAR % 
Non-

HOSTILITY 
SOAR % 

HOSTILITY CORRECTNESS 

44 5 Soar says: not hostile N Y 95.0% 5.0% 

45 8 Soar says: not hostile N Y 95.0% 5.0% 

46 2 Soar says: hostile Y Y 5.0% 95.0% 

47 2 Soar says: hostile Y Y 5.0% 95.0% 

48 3 Soar says: hostile Y Y 5.0% 95.0% 

49 7 Soar says: not hostile N Y 95.0% 5.0% 

100.0% 

50 7 Soar says: not hostile N Y 95.0% 5.0% 

51 2 Soar says: hostile Y Y 5.0% 95.0% 

52 7 Soar says: not hostile N Y 95.0% 5.0% 

53 1 Soar says: hostile Y Y 5.0% 95.0% 

54 3 Soar says: hostile Y Y 5.0% 95.0% 

55 1 Soar says: hostile Y Y 5.0% 95.0% 

56 6 Soar says: not hostile N Y 95.0% 5.0% 

57 5 Soar says: not hostile N Y 95.0% 5.0% 

87.5% 

58 3 Soar says: hostile Y Y 5.0% 95.0% 

59 1 Soar says: hostile Y Y 5.0% 95.0% 

60 6 Soar says: not hostile N Y 95.0% 5.0% 

61 3 Soar says: hostile Y Y 5.0% 95.0% 

62 3 Soar says: hostile Y Y 5.0% 95.0% 

63 4 Soar says: hostile N N 5.0% 95.0% 

64 5 Soar says: not hostile N Y 95.0% 5.0% 

65 6 Soar says: not hostile N Y 95.0% 5.0% 

87.5% 

66 5 Soar says: not hostile N Y 95.0% 5.0% 

67 8 Soar says: hostile N N 5.0% 95.0% 

68 5 Soar says: not hostile N Y 95.0% 5.0% 

69 7 Soar says: not hostile N Y 95.0% 5.0% 

70 8 Soar says: not hostile N Y 95.0% 5.0% 

71 5 Soar says: not hostile N Y 95.0% 5.0% 

72 2 Soar says: hostile Y Y 5.0% 95.0% 

73 1 Soar says: hostile Y Y 5.0% 95.0% 

100.0% 

74 7 Soar says: not hostile N Y 95.0% 5.0% 

75 1 Soar says: hostile Y Y 5.0% 95.0% 

76 4 Soar says: not hostile N Y 95.0% 5.0% 

77 1 Soar says: hostile Y Y 5.0% 95.0% 

78 1 Soar says: hostile Y Y 5.0% 95.0% 

79 3 Soar says: hostile Y Y 5.0% 95.0% 

80 7 Soar says: not hostile N Y 95.0% 5.0% 

81 1 Soar says: hostile Y Y 5.0% 95.0% 

87.5% 

82 6 Soar says: not hostile N Y 95.0% 5.0% 

83 4 Soar says: not hostile N Y 95.0% 5.0% 

84 4 Soar says: hostile N N 95.0% 5.0% 

85 3 Soar says: hostile Y Y 5.0% 95.0% 

86 3 Soar says: hostile Y Y 5.0% 95.0% 

87 3 Soar says: hostile Y Y 5.0% 95.0% 

88 5 Soar says: not hostile N Y 95.0% 5.0% 

89 2 Soar says: hostile Y Y 5.0% 95.0% 
100.0% 90 8 Soar says: not hostile N Y 95.0% 5.0% 

91 1 Soar says: hostile Y Y 5.0% 95.0% 
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LINE 
TRACK 

# 
SOAR 

RECOMMENDATION 
HOSTILE? 

(Y/N) Correct? 

SOAR % 
Non-

HOSTILITY 
SOAR % 

HOSTILITY CORRECTNESS 

92 7 Soar says: not hostile N Y 95.0% 5.0% 

93 5 Soar says: not hostile N Y 95.0% 5.0% 

94 3 Soar says: hostile Y Y 5.0% 95.0% 

95 6 Soar says: not hostile N Y 95.0% 5.0% 

96 4 Soar says: not hostile N Y 95.0% 5.0% 

97 2 Soar says: hostile Y Y 5.0% 95.0% 
100.0% 98 2 Soar says: hostile Y Y 5.0% 95.0% 

99 2 Soar says: hostile Y Y 5.0% 95.0% 
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APPENDIX C.  RUN 7. BOLTZMANN 

LINE TRACK # 
SOAR 

RECOMMENDATION 
HOSTILE? 

(Y/N) Correct? 
SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS 

1 3 Soar says: not hostile Y N 50.0% 50.0% 

48.0% 

2 7 Soar says: hostile N N 51.1% 48.9% 

3 2 Soar says: not hostile Y N 50.0% 50.0% 

4 6 Soar says: hostile N N 51.7% 48.3% 

5 3 Soar says: not hostile Y N 49.6% 50.4% 

6 7 Soar says: not hostile N Y 51.1% 48.9% 

7 3 Soar says: not hostile Y N 49.4% 50.6% 

8 1 Soar says: hostile Y Y 48.7% 51.3% 

9 2 Soar says: not hostile Y N 49.7% 50.3% 

10 6 Soar says: not hostile N Y 51.6% 48.4% 

11 8 Soar says: not hostile N Y 50.2% 49.8% 

12 5 Soar says: hostile N Y 50.7% 49.3% 

13 3 Soar says: not hostile Y N 49.5% 50.5% 

14 8 Soar says: hostile N N 50.5% 49.5% 

15 7 Soar says: hostile N N 51.3% 48.7% 

16 3 Soar says: not hostile Y N 49.4% 50.6% 

17 4 Soar says: not hostile N Y 50.0% 50.0% 

18 6 Soar says: hostile N N 52.4% 47.6% 

19 8 Soar says: hostile N N 50.6% 49.4% 

20 8 Soar says: not hostile N Y 50.8% 49.2% 

21 3 Soar says: not hostile Y N 49.5% 50.5% 

22 7 Soar says: not hostile N Y 51.8% 48.2% 

23 1 Soar says: not hostile Y N 48.6% 51.4% 

24 7 Soar says: hostile N N 51.8% 48.2% 

25 5 Soar says: hostile N N 51.1% 48.9% 

26 1 Soar says: hostile Y Y 48.6% 51.4% 

27 2 Soar says: not hostile Y N 50.1% 49.9% 

28 1 Soar says: hostile Y Y 48.3% 51.7% 

29 1 Soar says: not hostile Y N 48.2% 51.8% 

30 4 Soar says: hostile N N 49.9% 50.1% 

31 8 Soar says: hostile N N 50.9% 49.1% 

32 1 Soar says: hostile Y Y 48.4% 51.6% 

33 1 Soar says: hostile Y Y 48.3% 51.7% 

34 2 Soar says: hostile Y Y 49.8% 50.2% 

35 2 Soar says: not hostile Y N 49.5% 50.5% 

36 5 Soar says: not hostile N Y 51.2% 48.8% 

37 8 Soar says: hostile N N 50.8% 49.2% 

38 6 Soar says: hostile N N 52.7% 47.3% 

39 4 Soar says: hostile N N 49.8% 50.2% 

40 4 Soar says: not hostile N Y 50.1% 49.9% 

41 3 Soar says: not hostile Y N 49.7% 50.3% 

42 1 Soar says: hostile Y Y 48.3% 51.7% 

43 5 Soar says: not hostile N Y 51.5% 48.5% 
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LINE TRACK # 
SOAR 

RECOMMENDATION 
HOSTILE? 

(Y/N) Correct? 
SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS 

44 2 Soar says: hostile Y Y 49.4% 50.6% 

45 2 Soar says: not hostile Y N 49.2% 50.8% 

46 7 Soar says: hostile N N 51.1% 48.9% 

47 1 Soar says: not hostile Y N 48.1% 51.9% 

48 6 Soar says: not hostile N Y 52.7% 47.3% 

49 1 Soar says: hostile Y Y 48.1% 51.9% 

50 8 Soar says: hostile N N 50.5% 49.5% 

51 2 Soar says: not hostile Y N 49.1% 50.9% 

52 8 Soar says: hostile N N 50.6% 49.4% 

53 8 Soar says: hostile N N 50.7% 49.3% 

54 6 Soar says: hostile N N 52.8% 47.2% 

55 7 Soar says: not hostile N Y 51.1% 48.9% 

56 5 Soar says: hostile N N 51.6% 48.4% 

57 7 Soar says: not hostile N Y 51.2% 48.8% 

58 6 Soar says: hostile N N 52.8% 47.2% 

59 5 Soar says: hostile N N 51.6% 48.4% 

60 6 Soar says: not hostile N Y 52.7% 47.3% 

61 6 Soar says: not hostile N Y 52.6% 47.4% 

62 5 Soar says: not hostile N Y 51.6% 48.4% 

63 3 Soar says: not hostile Y N 49.6% 50.4% 

64 7 Soar says: not hostile N Y 51.2% 48.8% 

65 1 Soar says: not hostile Y N 48.1% 51.9% 

66 2 Soar says: hostile Y Y 49.2% 50.8% 

67 2 Soar says: not hostile Y N 48.9% 51.1% 

68 6 Soar says: not hostile N Y 52.4% 47.6% 

69 1 Soar says: hostile Y Y 47.9% 52.1% 

70 1 Soar says: not hostile Y N 47.9% 52.1% 

71 4 Soar says: not hostile N Y 50.1% 49.9% 

72 8 Soar says: not hostile N Y 50.3% 49.7% 

73 7 Soar says: not hostile N Y 51.3% 48.7% 

74 6 Soar says: hostile N N 52.8% 47.2% 

75 6 Soar says: not hostile N Y 52.7% 47.3% 

76 3 Soar says: hostile Y Y 49.6% 50.4% 

77 1 Soar says: hostile Y Y 48.0% 52.0% 

78 2 Soar says: hostile Y Y 49.0% 51.0% 

79 2 Soar says: hostile Y Y 48.9% 51.1% 

80 2 Soar says: hostile Y Y 48.8% 51.2% 

81 5 Soar says: not hostile N Y 51.4% 48.6% 

82 1 Soar says: hostile Y Y 47.8% 52.2% 

83 2 Soar says: not hostile Y N 48.7% 51.3% 

84 8 Soar says: not hostile N Y 50.1% 49.9% 

85 1 Soar says: hostile Y Y 47.8% 52.2% 

86 3 Soar says: not hostile Y N 49.5% 50.5% 

87 2 Soar says: not hostile Y N 48.8% 51.2% 

88 2 Soar says: not hostile Y N 48.6% 51.4% 

89 4 Soar says: not hostile N Y 49.8% 50.2% 

90 4 Soar says: hostile N N 50.0% 50.0% 
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LINE TRACK # 
SOAR 

RECOMMENDATION 
HOSTILE? 

(Y/N) Correct? 
SOAR % Non-
HOSTILITY 

SOAR % 
HOSTILITY CORRECTNESS 

91 7 Soar says: hostile N N 51.0% 49.0% 

92 6 Soar says: hostile N N 52.7% 47.3% 

93 7 Soar says: hostile N N 51.2% 48.8% 

94 1 Soar says: hostile Y Y 48.2% 51.8% 

95 8 Soar says: not hostile N Y 50.3% 49.7% 

96 5 Soar says: hostile N N 52.1% 47.9% 

97 3 Soar says: hostile Y Y 49.7% 50.3% 

98 2 Soar says: hostile Y Y 49.1% 50.9% 

99 3 Soar says: hostile Y Y 49.4% 50.6% 

100 8 Soar says: hostile N N 50.3% 49.7% 
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